Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Methods Protoc ; 9(1): bpae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371356

RESUMO

It is convenient to study complete genome sequences of human respiratory syncytial virus (hRSV) for ongoing genomic characterization and identification of highly transmissible or pathogenic variants. Whole genome sequencing of hRSV has been challenging from respiratory tract specimens with low viral loads. Herein, we describe an amplicon-based protocol for whole genome sequencing of hRSV subgroup A validated with 24 isolates from nasopharyngeal swabs and infected cell cultures, which showed cycle threshold (Ct) values ranging from 10 to 31, as determined by quantitative reverse-transcription polymerase chain reaction. MinION nanopore generated 3200 to 5400 reads per sample to sequence over 93% of the hRSV-A genome. Coverage of each contig ranged from 130× to 200×. Samples with Ct values of 20.9, 25.2, 27.1, 27.7, 28.2, 28.8, and 29.6 led to the sequencing of over 99.0% of the virus genome, indicating high genome coverage even at high Ct values. This protocol enables the identification of hRSV subgroup A genotypes, as primers were designed to target highly conserved regions. Consequently, it holds potential for application in molecular epidemiology and surveillance of this hRSV subgroup.

2.
Viral Immunol ; 36(8): 550-561, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37603294

RESUMO

Current evidence shows higher production of cytokines and antibodies against severe acute respiratory coronavirus 2 (SARS-CoV-2) in severe and critical cases of Coronavirus Disease 2019 (COVID-19) in comparison with patients with moderate or mild disease. A recent hypothesis proposes an important role of genotoxicity and cytotoxicity in the induction of the cytokine storm observed in some patients at later stages of the disease. Interestingly, in this study, we report significantly higher levels of interleukin (IL)-1ß, IL-6, MCP-1, and IL-4 cytokines in mild COVID-19 patients versus severe cases, as well as a high frequency of karyorrhexis (median [Me] = 364 vs. 20 cells) and karyolysis (Me = 266 vs. 52 cells) in the mucosal epithelial cells of both groups of patients compared with uninfected individuals. Although we observed higher levels of anti-SARS-CoV-2 IgM and IgG antibodies in COVID-19 patients, IgM antibodies were significantly higher only in mild cases, for the N and the S viral antigens. High levels of IgG antibodies were observed in both mild and severe cases. Our results showed elevated concentrations of proinflammatory and anti-inflammatory cytokines in mild cases, which may reflect an active innate immune response and could be related to the higher IgM and IgG antibody levels found in those patients. In addition, we found that SARS-CoV-2 infection induces cytotoxic damage in the oral mucosa, highlighting the importance of studying the genotoxic and cytotoxic events induced by infection and its role in the pathophysiology of COVID-19.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M
3.
Viral Immunol ; 36(1): 3-12, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367976

RESUMO

Respiratory RNA viruses are a major cause of acute lower respiratory tract infections and contribute substantially to hospitalization among infants, elderly, and immunocompromised. Complete viral clearance from acute infections is not always achieved, leading to persistence. Certain chronic respiratory diseases like asthma and chronic obstructive pulmonary disease have been associated with persistent infection by human respiratory syncytial virus and human rhinovirus, but it is still not clear whether RNA viruses really establish long-term infections as it has been recognized for DNA viruses as human bocavirus and adenoviruses. Herein, we summarize evidence of RNA virus persistence in the human respiratory tract, as well as in some animal models, to highlight how long-term infections might be related to development and/or maintenance of chronic respiratory symptoms.


Assuntos
Asma , Vírus de RNA , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Lactente , Humanos , Idoso , Sistema Respiratório
4.
Acta Virol ; 65(1): 49-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33827221

RESUMO

Synthesis of nitric oxide (NO) is induced as an early response to viral challenges. Here, we studied effects of endogenous and exogenous NO on respiratory syncytial virus (RSV) genome replication, using a persistently RSV infected macrophage-like cell line. NO was evaluated indirectly by nitrites accumulation and it was increased in infected macrophages with respect to non-infected cells. Phagocytosis of bacteria by persistently RSV infected macrophages increased nitrites production, and under such conditions the number of RSV-genome copies decreased up to 8.7-fold, whereas chemical inhibition of the inducible-NO synthase enzyme increased viral replication 2.7-fold. Since phagocytosis activates many signaling pathways, which could contribute to viral control, we explored the individual effect of NO by using the NO donor SNAP. Intriguingly, even though SNAP raised nitrites levels up to 3-fold, the number of RSV genome copies augmented 2.3-fold. This enhancement was associated with lengthening of the G0/G1 cell cycle phase mediated by the NO donor, as evaluated by BrdU/7-AAD incorporation through flow cytometry; this phase of the cell cycle was favorable for an increased RSV genome replication. Thus, NO produced endogenously during RSV persistence was not enough to control virus replication, although macrophage activation through phagocytosis inhibited replication of the persistent viral genome. In contrast, the NO donor SNAP increased viral genome replication, at least partially by altering the cell cycle, indicating that both sources of NO were not bioequivalent.  Keywords: cell cycle; endogenous nitric oxide; exogenous nitric oxide; nitric oxide donor; respiratory syncytial virus; viral persistence.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Linhagem Celular , Humanos , Óxido Nítrico , Vírus Sincicial Respiratório Humano/genética , Replicação Viral
5.
Virus Res ; 297: 198367, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684421

RESUMO

Long-term infection by human respiratory syncytial virus (hRSV) has been reported in immunocompromised patients. Cell lines are valuable in vitro model systems to study mechanisms associated with viral persistence. Persistent infections in cell cultures have been categorized at least as in "carrier-state", where there exist a low proportion of cells infected by a lytic virus, and as in "steady-state", where most of cells are infected, but in absence of cytophatic effect. Here, we showed that hRSV maintained a steady-state persistence in a macrophage-like cell line after 120 passages, since the viral genome was detected in all of the cells analyzed by fluorescence in situ hybridization, whereas only defective viruses were identified by sucrose gradients and titration assay. Interestingly, eight percent of cells harboring the hRSV genome revealed undetectable expression of the viral nucleoprotein N; however, when this cell population was sorted by flow cytometry and independently cultured, viral protein expression was induced at detectable levels since the first post-sorting passage, supporting that sorted cells harbored the viral genome. Sequencing of the persistent hRSV genome obtained from virus collected from cell-culture supernatants, allowed assembling of a complete genome that displayed 24 synonymous and 38 nonsynonymous substitutions in coding regions, whereas extragenic and intergenic regions displayed 12 substitutions, two insertions and one deletion. Previous reports characterizing mutations in extragenic regulatory sequences of hRSV, suggested that some mutations localized at the 3' leader region of our persistent virus might alter viral transcription and replication, as well as assembly of viral nucleocapsids. Besides, substitutions in P, F and G proteins might contribute to altered viral assembly, budding and membrane fusion, reducing the cytopathic effect and in consequence, contributing to host-cell survival. Full-length mutant genomes might be part of the repertoire of defective viral genomes formed during hRSV infections, contributing to the establishment and maintenance of virus persistence.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Linhagem Celular , Genoma Viral , Humanos , Hibridização in Situ Fluorescente , Macrófagos , Vírus Sincicial Respiratório Humano/genética , Análise de Sequência de DNA
6.
Arch Virol ; 164(9): 2231-2241, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177351

RESUMO

Viral persistence alters cellular antiviral activities. Nitric oxide (NO), a highly reactive free radical and a potent antiviral molecule, can inhibit replication of RNA and DNA viruses, but its production and effect during viral persistence are largely unknown. NO synthesis is stimulated in epithelial cells during acute infection with respiratory syncytial virus (RSV) and interferes with viral replication. In this study, we compared the levels of production of NO and expression of its regulatory enzymes, inducible nitric oxide synthase (NOS II) and arginase 1 (Arg-1), during acute and persistent RSV infection in a macrophage cell line to investigate their role in the control and maintenance of viral infection. We observed that NO and NOS II mRNA were induced at higher levels in acutely infected macrophages than in persistently infected macrophages, while the kinetics of NOS II protein expression were similar in both types of infected cultures, except that its disappearance was delayed during acute infection. Thus, NOS II was inducible and expressed at high levels during persistent infection, but production of NO was low relative to acute infection. This was not associated with a lack of enzymatic activity but instead was due to constitutive expression of the Arg-1 enzyme at the mRNA and protein levels, suggesting that arginase restricts availability of L-arginine as a substrate for NOS II to synthesize NO. This hypothesis was supported by showing that arginase enzymatic activity was inhibited in persistently RSV-infected cells by Nω-hydroxy-nor-L-arginine, increasing L-arginine availability in conditioned medium and producing increased levels of nitrites, concurrently with a significant reduction in virus genome replication, implying that Arg-1 overexpression contributes to the maintenance of the RSV genome in the host in persistent infection.


Assuntos
Arginase/metabolismo , Óxido Nítrico/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Arginase/genética , Arginina/metabolismo , Regulação para Baixo , Humanos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Infecções por Vírus Respiratório Sincicial/enzimologia , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/genética , Replicação Viral
7.
Virus Res ; 230: 29-37, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069520

RESUMO

Cells susceptible to persistent viral infections undergo important changes in their biological functions as a consequence of the expression of viral gene products that are capable of altering the gene expression profile of the host cell. Previously, we reported that persistence of the RSV genome in a mouse macrophage cell line induces important alterations in cell homeostasis, including constitutive expression of IFN-ß and other pro-inflammatory cytokines. Here, we postulated that changes in the homeostasis of non-infected macrophages could be induced by soluble factors secreted by persistently RSV- infected macrophages. To test this hypothesis, non-infected mouse macrophages were treated with conditioned medium (CM) collected from cultures of persistently RSV-infected macrophages. Total RNA was extracted and a microarray-based gene expression analysis was performed. Non-infected macrophages, treated under similar conditions with CM obtained from cultures of non-infected macrophages, were used as a control to establish differential gene expression between the two conditions. Results showed that CM from the persistently RSV-infected cultures altered expression of a total of 95 genes in non-infected macrophages, resulting in an antiviral gene-transcription profile along with inhibition of the inflammatory response, since some inflammatory genes were down-regulated, including Nlrp3 and Il-1 ß, both related to the inflammasome pathway. However, down-regulation of Nlrp3 and Il-1 ß was reversible upon acute RSV infection. Additionally, we observed that the inflammatory response, evaluated by secreted IL-1 ß, a final product of the inflammasome activity, was enhanced during acute RSV infection in macrophages treated with CM from persistently RSV-infected cultures, compared to that in macrophages treated with the control CM. This suggests that soluble factors secreted during RSV persistence may induce an exacerbated inflammatory response in non-infected cells.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamassomos/antagonistas & inibidores , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Transdução de Sinais
8.
Viruses ; 6(2): 624-39, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24509813

RESUMO

Viruses can persist in differentiated cells (i.e., macrophages) over long periods of time, altering host cells functions but not inducing their death. We had previously reported that, in early passages (14-40) of a murine macrophage-like cell line persistently infected with respiratory syncytial virus (RSV) (MfP), FcgR-mediated phagocytosis and expression of FcgRIIB/RIII on the cell membrane were increased with respect to mock-infected macrophages (MfN). In this work, we explored the mechanism underlying such effects. Increases in FcgR expression and FcgR-mediated phagocytosis are preserved after more than 87 passages of the persistently infected culture. We analyzed the expression of FcgR isoforms at both mRNA and protein levels, and found out that RSV persistence distinctly affects the expression of FcgR isoforms. We also observed that the increase in FcgRs expression results neither from soluble factors (cytokines) or viral products released by the infected cells, nor from an increase in the rate of FcgR internalization. Our results suggest that RSV persistence in macrophages induce intracellular effects that have an impact on FcgRs gene expression at both mRNA and protein levels, and that the characteristics of RSV persistence were preserved for over 87 passages.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/virologia , Receptores de IgG/biossíntese , Vírus Sinciciais Respiratórios/fisiologia , Animais , Camundongos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...